30V/3A 低饱和压降 PNP 三极管集成 20V 沟槽式 NMOSFET

特性

- 集电极-发射极间低饱和压降
- 大电流驱动能力
- 高电流增益
- 集成 20V 沟槽式 NMOSFET
- 可提供 DFN2X2-6L 封装
- 符合 ROHS 规范

应用

电池充电 便携式电子产品的电源管理

概要

AW3112 是一款利用平面外延工艺生产的 30V PNP 功率三极管,同时集成了 20V 沟槽式 NMOSFET,作为基极开关管。

AW3112 拥有很小的集电极-发射极间饱和压降以及 很高的电流增益,特别适用于锂电池的大电流线性充 电。

AW3112 提供纤小 DFN2×2-6L 封装, 额定的工作温度范围为-40℃至+150℃。

引脚分布图及标识图

AW3112DNR器件标识 (DFN2X2-6L封装)

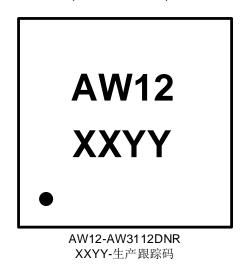


图 1 AW3112 引脚分布(左)及标识图(右)

手册中提到的全部商标所有权归各自拥有者所有。

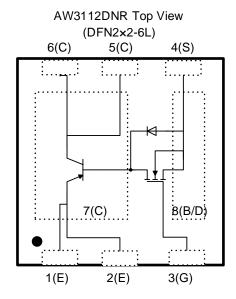
30V/3A PNP Low V_{CESAT} BJT, Integrated with 20V Trench NMOSFET

FEATURES

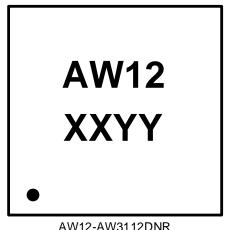
- Low collector-emitter saturation voltage
- Large current capability
- High current gain
- DFN2×2-6L Package
- ROHS compliant

APPLICATIONS

Battery Charging
Portable Device Power Management


GENERAL DESCRIPTION

The AW3112 is 30V PNP power bipolar transistor using epitaxial planar technology, integrating with a 20V trench NMOSFET as a switch transistor of base.


The AW3112 has low V_{CESAT} and high current gain. It is suitable for linear regulator in battery charging application.

AW3112 is available in DFN2×2-6L package. It is specified among the industrial temperature range of -40 $^{\circ}$ C and +150 $^{\circ}$ C

PIN CONFIGURATION AND MARKING

AW3112DNR Marking (DFN2×2-6L)

AW12-AW3112DNR XXYY-Manufacture Date Code

Figure 1 Pin Configuration and Top Mark

All trademarks are the property of their respective owners.

PIN DEFINITION

No.	NAME	DESCRIPTION	
1	Е	Emitter of 20\/ DND D IT translator	
2	Е	Emitter of 30V PNP BJT transistor.	
3	G	Gate of 20V NMOS transistor.	
4	S	Source of 20V NMOS transistor.	
5	С	Collector of 30V PNP BJT transistor.	
6	С		
7	С	Exposed pad, should be connected to pin5/6 on PCB board.	
8	B/D	Exposed pad, the junction of PNP base and NMOS drain, should be floated on PCB board.	

TYPICAL APPLICATION CIRCUITS

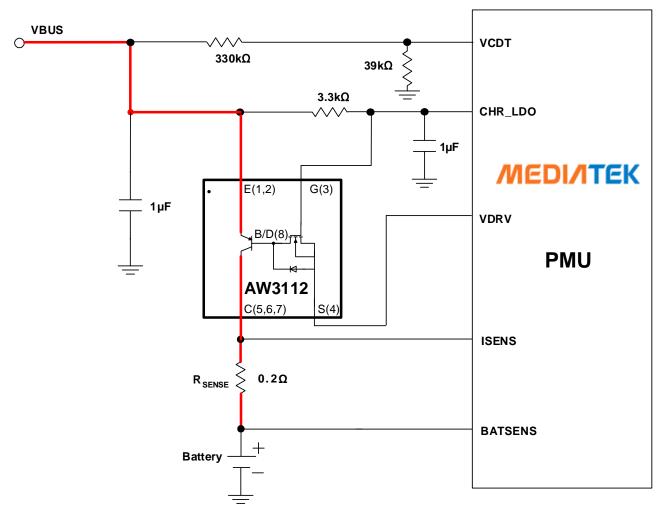
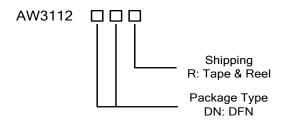



Figure 2 AW3112 Application Circuit with MTK PMU, e.g. MT6323 MT6329NOTE1

Note1: The red route in the figure above indicates the large current path, please pay attention to the path width on PCB board. In general, a factor of 40mil/A between path width and current is suitable. For example, the current set is 0.8A, then the path width should not less than 40x0.8=32mil.

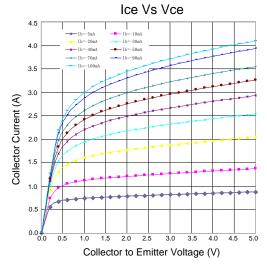
ORDERING INFORMATION

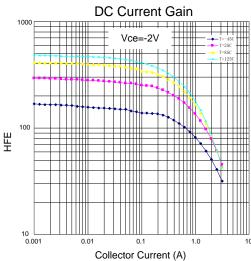
Part Number	Temperature	Package	Marking	Delivery Form
AW3112 DNR	-40℃~85℃	DFN2×2mm-6L	AW12	3000 units/ Tape and Reel

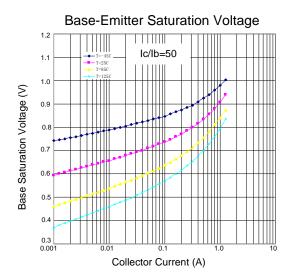
ABSOLUTE MAXIMUM RATINGS(NOTE1)

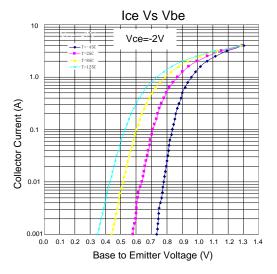
Symbol	Parameter	Value	Unit		
30V PNP BJT	30V PNP BJT				
Vcbo	Collector-Base Voltage	-40	V		
Vceo	Collector-Emitter Voltage	-32	V		
Vebo	Emitter-base Voltage	-6	V		
Ic	Collector Current	-3	A		
Icm	Collector Peak Current	-6	A		
20V NMOSFET					
Vdss	Drain-source voltage	20	V		
Vgss	Gate-source voltage	±8	V		
ld	Drain current	180	mA		
ldp	Drain peak current	360	mA		
Temperature, Dissipation and Thermal Resistance					
Ptot	Total Dissipation	1.5	W		
Tj	Junction Temperature	150	$^{\circ}$ C		
Tstg	Storage Temperature	-65~150	°C		
T∟	Lead Temperature	260	${\mathbb C}$		
θЈА	Thermal Resistance	85.6	°C/W		

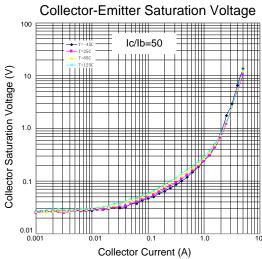
NOTE1: Conditions out of those ranges listed in "absolute maximum ratings" may cause permanent damages to the device. In spite of the limits above, functional operation conditions of the device should within the ranges listed in "recommended operating conditions". Exposure to absolute-maximum-rated conditions for prolonged periods may affect device reliability.

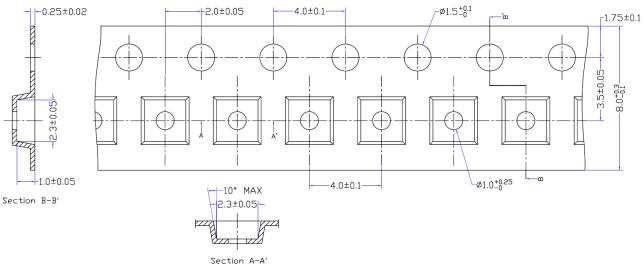


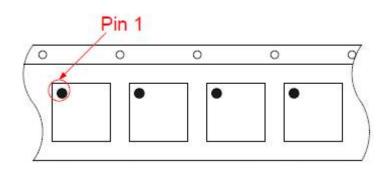

ELECTRICAL CHARACTERISTICS


 $T=25^{\circ}C$ unless otherwise specified.

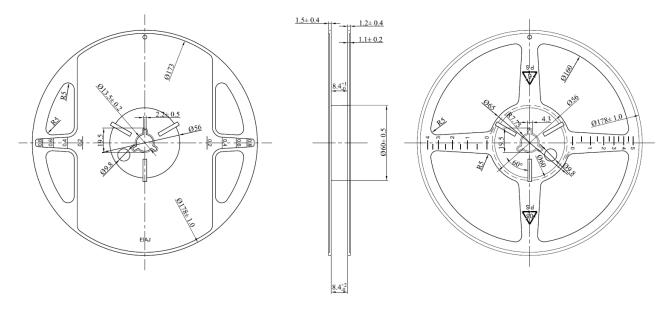

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit	
30V PNP I	BJT		·	·			
BVceo	Collector-emitter breakdown voltage	Ic=-10mA, Ib=0mA	-32			V	
BVcbo	Collector-base breakdown voltage	Ic=-0.1mA, Ie=0mA	-40			V	
BVebo	Emitter-base breakdown voltage	le=-1mA, lc=0mA	-6			V	
Icbo	Collector cutoff current	Vcb=-30V			-0.1	μA	
lebo	Emitter cutoff current	Veb=-5V			-0.1	μA	
Vce(sat)	Collect-emitter saturation voltage	Ic=-1A, Ib=-20mA			-0.35	V	
Vbe(sat)	Base-emitter saturation voltage	Ic=-1A, Ib=-20mA			-1.2	V	
HFE1	DC current gain	Ic=-1A, Vce=-2V	100				
HFE2	DC current gain	Ic=-0.1A, Vce=-2V	200				
20V NMO	SFET						
BVdss	Drain-source breakdown voltage	Vgs=0V, Ids=250μA	20			V	
Vth	Threshold voltage	Vgs=Vds, Ids=250µA	0.4		1.0	V	
Igss	Gate leakage current	Vds=0V, Vgs=±8V			±100	nA	
Idss	Drain leakage current	Vgs=0V, Vds=20V			1	μA	
Rds(on)	Drain source on registeres	Vgs=2.5V,Id=50mA			0.5	Ω	
	Drain-source on-resistance	Vgs=1.5V,Id=50mA			1		
Vsd	Body diode forward voltage	Isd=1A, Vgs=0V	0.5		1.2	V	


TYPICAL CHARACTERISTICS



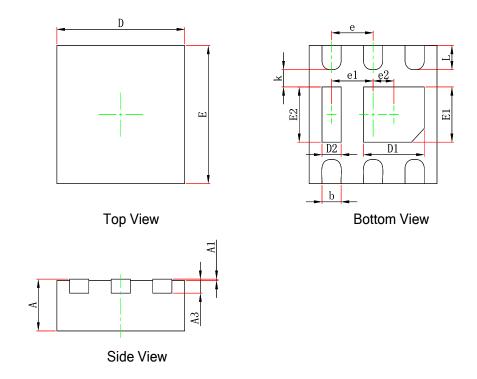

TAPE AND REEL INFORMATION

CARRIER TAPE



- 1.10 procket hole pitch cumulative tolerance ± 0.2
- 2.Carrier camber is within 1mm in 100mm 3.MATERIAL:CONDUCTIVE POYSTYRENE
- 4.ALL DIMS IN MM
- 5.There must not be foreign body adhesion and the state of the surface must be excellent
- 6.17" PAPER-Reel, 125000 pockets(500m)
- 7.Surface resistance 1X10E11(max) OHMS/SQ

PIN1


REEL

Notes:

- 1、All dimensions are in millimeter (mm).
- 2. All unspecified tolerances are ±0.25mm.

PACKAGE DESCRIPTION

Symbol	Dimensions In Millimeters			
	MIN	NOM	MAX	
Α	0.700	0.750	0.800	
A1	0.000	0.025	0.050	
A3		0.203REF		
D	1.924	2.000	2.076	
Е	1.924	2.000	2.076	
D1	0.850	0.950	1.050	
E1	0.700	0.800	0.900	
D2	0.200	0.300	0.400	
E2	0.700	0.800	0.900	
e1	0.650TYP			
e2	0.325TYP			
k	0.200MIN			
b	0.250	0.300	0.350	
е	0.650TYP			
L	0.300	0.350	0.400	

NOTE:

- 1. AW3112 is compatible with the current **RoHS** requirements and adopts **Halogen-Free** assembly;
- 2. AW3112 is produced based on MSL level-3 according to the JEDEC industry standard classification.

REFLOW

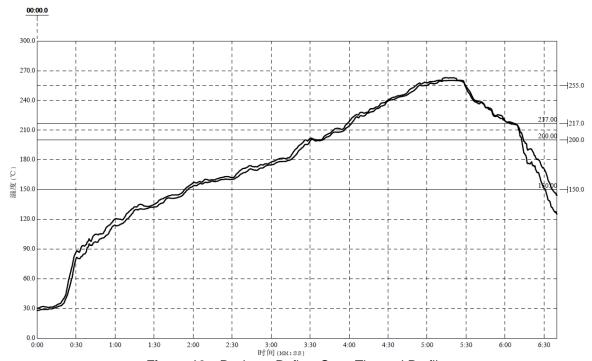


Figure 10 Package Reflow Oven Thermal Profile

Reflow Note	Spec
Average ramp-up rate (217℃c to Peak)	Max. 3°C/sec
Time of Preheat temp.(from 150℃ to 200℃)	60-120sec
Time to be maintained above 217℃	60-150sec
Peak Temperature	>260℃
Time within 5℃ of actual peak temp	20-40sec.
Ramp-down rate	Max. 6°C/sec
Time from 25℃ to peak temp	Max. 8min.

REVISION HISTORY

Version	Date	Change Record
V1.0	March 2015	Officially Released
V1.1	August 2017	 Added Tape and Reel & pin1 information; Added RoHS etc. level information; Added Reflow information.

DISCLAIMER

Information in this document is believed to be accurate and reliable. However, Shanghai AWINIC Technology Co., Ltd (AWINIC Technology) does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

AWINIC Technology reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. Customers shall obtain the latest relevant information before placing orders and shall verify that such information is current and complete. This document supersedes and replaces all information supplied prior to the publication hereof.

AWINIC Technology products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an AWINIC Technology product can reasonably be expected to result in personal injury, death or severe property or environmental damage. AWINIC Technology accepts no liability for inclusion and/or use of AWINIC Technology products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications that are described herein for any of these products are for illustrative purposes only. AWINIC Technology makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

All products are sold subject to the general terms and conditions of commercial sale supplied at the time of order acknowledgement.

Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Reproduction of AWINIC information in AWINIC data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. AWINIC is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of AWINIC components or services with statements different from or beyond the parameters stated by AWINIC for that component or service voids all express and any implied warranties for the associated AWINIC component or service and is an unfair and deceptive business practice. AWINIC is not responsible or liable for any such statements.